3.3056 \(\int \frac{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{x} \, dx\)

Optimal. Leaf size=145 \[ -2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}+2 \sqrt{a} \tanh ^{-1}\left (\frac{2 a+b \sqrt{\frac{d}{x}}}{2 \sqrt{a} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )-\frac{b \sqrt{d} \tanh ^{-1}\left (\frac{b d+2 c \sqrt{\frac{d}{x}}}{2 \sqrt{c} \sqrt{d} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )}{\sqrt{c}} \]

[Out]

-2*Sqrt[a + b*Sqrt[d/x] + c/x] + 2*Sqrt[a]*ArcTanh[(2*a + b*Sqrt[d/x])/(2*Sqrt[a]*Sqrt[a + b*Sqrt[d/x] + c/x])
] - (b*Sqrt[d]*ArcTanh[(b*d + 2*c*Sqrt[d/x])/(2*Sqrt[c]*Sqrt[d]*Sqrt[a + b*Sqrt[d/x] + c/x])])/Sqrt[c]

________________________________________________________________________________________

Rubi [A]  time = 0.207595, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.269, Rules used = {1970, 1357, 734, 843, 621, 206, 724} \[ -2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}+2 \sqrt{a} \tanh ^{-1}\left (\frac{2 a+b \sqrt{\frac{d}{x}}}{2 \sqrt{a} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )-\frac{b \sqrt{d} \tanh ^{-1}\left (\frac{b d+2 c \sqrt{\frac{d}{x}}}{2 \sqrt{c} \sqrt{d} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )}{\sqrt{c}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sqrt[d/x] + c/x]/x,x]

[Out]

-2*Sqrt[a + b*Sqrt[d/x] + c/x] + 2*Sqrt[a]*ArcTanh[(2*a + b*Sqrt[d/x])/(2*Sqrt[a]*Sqrt[a + b*Sqrt[d/x] + c/x])
] - (b*Sqrt[d]*ArcTanh[(b*d + 2*c*Sqrt[d/x])/(2*Sqrt[c]*Sqrt[d]*Sqrt[a + b*Sqrt[d/x] + c/x])])/Sqrt[c]

Rule 1970

Int[(x_)^(m_.)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> -Dist[d^(m + 1), Subst
[Int[(a + b*x^n + (c*x^(2*n))/d^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2,
 -2*n] && IntegerQ[2*n] && IntegerQ[m]

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{x} \, dx &=-\operatorname{Subst}\left (\int \frac{\sqrt{a+b \sqrt{x}+\frac{c x}{d}}}{x} \, dx,x,\frac{d}{x}\right )\\ &=-\left (2 \operatorname{Subst}\left (\int \frac{\sqrt{a+b x+\frac{c x^2}{d}}}{x} \, dx,x,\sqrt{\frac{d}{x}}\right )\right )\\ &=-2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}+\operatorname{Subst}\left (\int \frac{-2 a-b x}{x \sqrt{a+b x+\frac{c x^2}{d}}} \, dx,x,\sqrt{\frac{d}{x}}\right )\\ &=-2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}-(2 a) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+\frac{c x^2}{d}}} \, dx,x,\sqrt{\frac{d}{x}}\right )-b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x+\frac{c x^2}{d}}} \, dx,x,\sqrt{\frac{d}{x}}\right )\\ &=-2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}+(4 a) \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b \sqrt{\frac{d}{x}}}{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )-(2 b) \operatorname{Subst}\left (\int \frac{1}{\frac{4 c}{d}-x^2} \, dx,x,\frac{b+\frac{2 c \sqrt{\frac{d}{x}}}{d}}{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )\\ &=-2 \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}+2 \sqrt{a} \tanh ^{-1}\left (\frac{2 a+b \sqrt{\frac{d}{x}}}{2 \sqrt{a} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )-\frac{b \sqrt{d} \tanh ^{-1}\left (\frac{\sqrt{d} \left (b+\frac{2 c \sqrt{\frac{d}{x}}}{d}\right )}{2 \sqrt{c} \sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}\right )}{\sqrt{c}}\\ \end{align*}

Mathematica [F]  time = 0.132332, size = 0, normalized size = 0. \[ \int \frac{\sqrt{a+b \sqrt{\frac{d}{x}}+\frac{c}{x}}}{x} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[Sqrt[a + b*Sqrt[d/x] + c/x]/x,x]

[Out]

Integrate[Sqrt[a + b*Sqrt[d/x] + c/x]/x, x]

________________________________________________________________________________________

Maple [B]  time = 0.13, size = 237, normalized size = 1.6 \begin{align*}{\frac{1}{c}\sqrt{{\frac{1}{x} \left ( b\sqrt{{\frac{d}{x}}}x+ax+c \right ) }} \left ( -\sqrt{c}{a}^{{\frac{3}{2}}}\ln \left ({ \left ( 2\,c+b\sqrt{{\frac{d}{x}}}x+2\,\sqrt{c}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c} \right ){\frac{1}{\sqrt{x}}}} \right ) \sqrt{{\frac{d}{x}}}xb+2\,{a}^{3/2}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}\sqrt{{\frac{d}{x}}}xb+2\,{a}^{5/2}\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}x-2\, \left ( b\sqrt{{\frac{d}{x}}}x+ax+c \right ) ^{3/2}{a}^{3/2}+2\,\ln \left ( 1/2\,{\frac{1}{\sqrt{a}} \left ( b\sqrt{{\frac{d}{x}}}\sqrt{x}+2\,\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}\sqrt{a}+2\,a\sqrt{x} \right ) } \right ) \sqrt{x}{a}^{2}c \right ){\frac{1}{\sqrt{b\sqrt{{\frac{d}{x}}}x+ax+c}}}{a}^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+c/x+b*(d/x)^(1/2))^(1/2)/x,x)

[Out]

((b*(d/x)^(1/2)*x+a*x+c)/x)^(1/2)*(-c^(1/2)*a^(3/2)*ln((2*c+b*(d/x)^(1/2)*x+2*c^(1/2)*(b*(d/x)^(1/2)*x+a*x+c)^
(1/2))/x^(1/2))*(d/x)^(1/2)*x*b+2*a^(3/2)*(b*(d/x)^(1/2)*x+a*x+c)^(1/2)*(d/x)^(1/2)*x*b+2*a^(5/2)*(b*(d/x)^(1/
2)*x+a*x+c)^(1/2)*x-2*(b*(d/x)^(1/2)*x+a*x+c)^(3/2)*a^(3/2)+2*ln(1/2*(b*(d/x)^(1/2)*x^(1/2)+2*(b*(d/x)^(1/2)*x
+a*x+c)^(1/2)*a^(1/2)+2*a*x^(1/2))/a^(1/2))*x^(1/2)*a^2*c)/(b*(d/x)^(1/2)*x+a*x+c)^(1/2)/c/a^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{b \sqrt{\frac{d}{x}} + a + \frac{c}{x}}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sqrt(d/x) + a + c/x)/x, x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b \sqrt{\frac{d}{x}} + \frac{c}{x}}}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)**(1/2))**(1/2)/x,x)

[Out]

Integral(sqrt(a + b*sqrt(d/x) + c/x)/x, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+c/x+b*(d/x)^(1/2))^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError